Konsepsualisasi Perancangan dan Pembinaan Instrumen Penilaian Dalam Era Kecerdasan Buatan
Conceptualizing The Planning and Development of Assessment Instruments in the Era of Artificial Intelligence
DOI:
https://doi.org/10.33102/sainsinsani.vol10no2.827Keywords:
instrument development, artificial intelligence, assessment, digital ethics, 21st-century assessment, pembinaan instrumen, kecerdasan buatan, penilaian, etika digital, penilaian abad ke-21Abstract
Abstrak: Kemajuan teknologi kecerdasan buatan (AI) dalam bidang pendidikan telah membawa perubahan ketara terhadap pendekatan penilaian, yang menuntut pembangunan instrumen lebih autentik, sahih dan selaras dengan prinsip kemajuan kecerdasan buatan. Dalam konteks ini, perancangan pembangunan instrumen sistematik menjadi teras penting bagi memastikan keupayaan menilai kompetensi pelajar dalam ekosistem pembelajaran berasaskan AI dapat dijalankan secara berkesan dan bertanggungjawab. Kertas konsep ini membincangkan cadangan perancangan dan pembinaan instrumen penilaian dalam era kecerdasan buatan. Metodologi yang digunakan dalam pembangunan instrumen menggunakan pendekatan seperti model ADDIE, serta pendekatan penilaian psikometrik seperti analisis faktor eksploratori (EFA), analisis faktor sahkan (CFA), Alpha Cronbach dan Composite Reliability untuk menguji kesahan dan kebolehpercayaan. Perhatian turut diberikan kepada panduan konseptual dan praktikal kepada penyelidik, pendidik dan pembuat dasar dalam mereka bentuk penilaian yang dapat mengukur literasi AI, kejujuran akademik dan etika teknologi secara efektif. Implikasinya, instrumen yang dibina bukan sahaja bertindak sebagai alat pengukuran, tetapi turut menjadi intervensi nilai dalam pendidikan digital. Instrumen ini boleh menyokong pelaksanaan kurikulum literasi AI dan membantu menilai keberkesanan program pembelajaran berasaskan teknologi. Kajian lanjutan disarankan agar melibatkan ujian terhadap populasi pelbagai, kajian longitudinal untuk menelusuri perubahan sikap pelajar terhadap AI, serta penggunaan pendekatan kualitatif seperti temu bual atau refleksi pelajar untuk memperkukuh pemahaman terhadap dinamika nilai dan keputusan etika pelajar. Perbincangan ini boleh memberi sumbangan bermakna dalam membina sistem penilaian yang relevan, sahih dan beretika dalam era kecerdasan buatan.
Abstract: The advancement of artificial intelligence (AI) technology in education has brought significant changes to assessment approaches, requiring the development of more authentic, valid, and AI-aligned instruments. In this context, systematic planning for instrument development serves as an essential foundation to ensure the effective and responsible evaluation of students’ competencies within AI-based learning ecosystems. This conceptual paper discusses the proposed planning and development of assessment instruments in the era of artificial intelligence. The methodology applied in the instrument development employs approaches such as the ADDIE model and psychometric evaluation techniques, including Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), Cronbach’s Alpha, and Composite Reliability to examine validity and reliability. Attention is also given to providing conceptual and practical guidance for researchers, educators, and policymakers in designing assessments that can effectively measure AI literacy, academic honesty, and technological ethics. The implications suggest that the developed instrument not only functions as a measurement tool but also serves as a value-based intervention in digital education. This instrument can support the implementation of AI literacy curricula and assist in evaluating the effectiveness of technology-enhanced learning programs. Future studies are recommended to include diverse populations, conduct longitudinal research to trace changes in students’ attitudes toward AI, and apply qualitative approaches such as interviews or student reflections to strengthen understanding of students’ ethical reasoning and value dynamics. This discussion is expected to make a meaningful contribution toward developing a relevant, valid, and ethical assessment system in the era of artificial intelligence.
Downloads
References
Delcker, J., Heil, J., & Ifenthaler, D. (2024). Evidence-based development of an instrument for the assessment of teachers’ self-perceptions of their artificial intelligence competence. Educational Technology Research and Development, 73(1), 115–133. https://doi.org/10.1007/s11423-024-10418-1
Guo, S., Shi, L., & Zhai, X. (2024). Validating an Instrument for Teachers’ Acceptance of Artificial Intelligence in Education. ArXiv E-Prints, 1–10. http://arxiv.org/abs/2406.10506
Hamed Abdelreheem Ead. (2024). Exploring the Impact of Artificial Intelligence on Academic Writing: Perspectives of Ph.D. Students in the Faculty of Science at Cairo University. SunText Review of Medical & Clinical Research, 5(4), 1–9. https://doi.org/10.51737/2766-4813.2024.108
Knoth, N., Decker, M., Laupichler, M. C., Pinski, M., Buchholtz, N., Bata, K., & Schultz, B. (2024). Developing a holistic AI literacy assessment matrix – Bridging generic, domain-specific, and ethical competencies. Computers and Education Open, 6(April), 1–14. https://doi.org/10.1016/j.caeo.2024.100177
Natalia Sevcenko, Tobias Appel, Manuel Ninaus, Moeller, K., & Peter Gerjets. (2023). Theory-based approach for assessing cognitive load during time-critical resource-managing human–computer interactions: an eye-tracking study. Journal on Multimodal User Interfaces, 17(1), 1–19. https://doi.org/10.1007/s12193-022-00398-y
Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Bich-Phuong Thi Nguyen. (2023). Ethical principles for artificial intelligence in K-12 education. Education and Information Technologies, 4(28), 100131. https://doi.org/10.1016/j.caeai.2023.100131
Rozo García, H., Alcantar Nieblas, C., & Ramírez Montoya, M. S. (2024). Scale to measure student perception in collaborative online international learning experiences: design and validation. Frontiers in Education, 9, 1–10. https://doi.org/10.3389/feduc.2024.1401295
Samuel Boateng, Gilbert Kalonde Gilbert, & Caludia Duedu. (2024). Augmenting Academic Efficiency: The Integration of Assessments Within the Addie Model for Pedagogical Development. Proceedings of The International Conference on Advanced Research in Education, Teaching, and Learning, 1(1), 1–12. https://doi.org/10.33422/aretl.v1i1.186
Sigit Wibowo, Muhammad Nur Wangid, & Fery Muhamad Firdaus. (2025). The relevance of Vygotsky’s constructivism learning theory with the differentiated learning primary schools. Journal of Education and Learning, 19(1), 431–440. https://doi.org/10.11591/edulearn.v19i1.21197
Yueqiao Jin, Roberto Martinez Maldonado, Dragan Gašević, & Lixiang Yan. (2024). GLAT: The Generative AI Literacy Assessment Test. 4984, 1–20. https://doi.org/10.1016/j.caeai.2025.100436
Ziying Wang, Ching Sing Chai, Jiajing Li, & Vivian Wing Yan. (2025). Assessment of AI ethical reflection: the development and validation of the AI ethical reflection scale (AIERS) for university students. International Journal of Educational Technology in Higher Education, 22(19), 1–16. https://doi.org/10.1186/s41239-025-00519-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rosidah Md Desa, MOHD EFFENDI EWAN MOHD MATORE (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. Author holds the copyright of the article.
2. Jurnal Sains Insani owns the rights to publish the article. The writer may request permission to republish the article from the editor.
3. Jurnal Sains Insani follows the APA (American Psychological Association) style for all in-text citation and list of bibliographies.








