Beyond Grades - Predicting Programme Learning Outcomes with Multi-Output Regression in Malaysian Higher Education

Melangkaui Gred: Meramal Hasil Pembelajaran Program (PLO) dengan Regresi Pelbagai Hasil dalam Pendidikan Tinggi Malaysia

Authors

DOI:

https://doi.org/10.33102/sainsinsani.vol10no2.838

Keywords:

Programme Learning Outcomes, multi-output regression, outcome-based education, Malaysia higher education

Abstract

Grades often conceal specific competencies, while Malaysia's Outcome-Based Education (OBE) requires evidence at the Programme Learning Outcome (PLO) level. We develop a PLO-centric predictive framework that forecasts students' 12 end-of-programme PLO scores. Using anonymised records for 194 engineering students, we constructed a semester-indexed feature set (167 predictors) and jointly modelled all 12 PLOs via multi-output regression. Eleven algorithms (CatBoost, Extra Trees, LightGBM, Gradient Boosting, XGBoost, Random Forest, SVR, k-NN, Bayesian Ridge, AdaBoost, HistGradientBoosting) were evaluated under 70/30, 80/20, 90/10 hold-out regimes with 10-fold CV on training folds. We benchmarked macro Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of determination (R²), and tested stacking and convex blending. Across splits, Bayesian Ridge was the most reliable single model by MAE (with CatBoost occasionally leading in R²), and a simple convex blend (Bayesian Ridge + CatBoost ± Extra Trees/Gradient Boosting) delivered ~5-13% lower MAE than the best single learner, whereas stacking did not add consistent gains. Model interpretability (model-native importances, SHapley Additive exPlanations (SHAP)) shows a noticeable later-year (third year and beyond) pattern, Semester 2 signal with recurrent contributions from PLO2 and PLO7, alongside a meaningful early-year indicator (e.g., PLO2_Semester_2_Year_1). The framework enables earlier, PLO-level feedback aligned with accreditation, supporting targeted intervention and curriculum improvement can be extended with broader cohorts, richer behavioural/demographic features, fairness audits, and cross-institutional generalisation.

 

Abstrak: Gred sering menyembunyikan kecekapan khusus, manakala Pendidikan Berasaskan Hasil (Outcome-Based Education, OBE) di Malaysia memerlukan bukti pada aras Hasil Pembelajaran Program (Program Learning Outcome, PLO). Kami membangunkan rangka kerja ramalan berpusatkan PLO yang meramalkan 12 skor PLO akhir program pelajar. Menggunakan rekod yang telah dianonimkan bagi 194 pelajar kejuruteraan, kami membina set ciri berindeks semester (167 peramal) dan memodelkan kesemua 12 PLO secara bersama melalui regresi pelbagai hasil. Sebelas algoritma (CatBoost, Extra Trees, LightGBM, Gradient Boosting, XGBoost, Random Forest, SVR, k-Jiran Terdekat (k-NN), Bayesian Ridge, AdaBoost, HistGradientBoosting) dinilai di bawah tiga pembahagian latih-ujian jenis hold-out (70/30, 80/20, 90/10) dengan pengesahan silang 10 lipatan pada set latihan. Kami membanding aras ralat menggunakan ralat mutlak min berpurata makro (MAE), ralat punca min kuasa dua (RMSE) dan pekali penentuan (R²), serta menguji dua strategi ensambel (penindanan dan pengadunan cembung). Merentas semua pecahan, Bayesian Ridge ialah model tunggal paling boleh diharap dari segi MAE (dengan CatBoost kadang-kadang mendahului dari segi R²), dan pengadunan cembung ringkas (Bayesian Ridge + CatBoost ± Extra Trees/Gradient Boosting) memberikan pengurangan MAE sekitar ~5-13% berbanding model tunggal terbaik, manakala penindanan tidak menambah peningkatan yang konsisten. Kebolehtafsiran model (kepentingan asli model dan SHapley Additive exPlanations (SHAP)) menunjukkan corak yang jelas pada tahun-tahun akhir (tahun ketiga dan ke atas), isyarat Semester 2 dengan sumbangan berulang daripada PLO2 dan PLO7, di samping penunjuk awal tahun yang bermakna (cth., PLO2_Semester_2_Tahun_1). Rangka kerja ini membolehkan maklum balas lebih awal pada aras PLO yang sejajar dengan keperluan akreditasi, menyokong intervensi tersasar dan penambahbaikan kurikulum. Pada masa hadapan, ia boleh diperluas dengan kohort yang lebih besar, ciri tingkah laku/demografi yang lebih kaya, audit keadilan, serta penggeneralisasian rentas institusi.

Downloads

Download data is not yet available.

References

Ab Rahim, A. A., & Buniyamin, N. (2022). Predicting Engineering Students’ Academic Performance using Ensemble Classifiers - A Preliminary Finding. Journal of Electrical & Electronic Systems Research, 20(APR2022), 92–101. https://doi.org/10.24191/jeesr.v20i1.013

Abiodun, O. J., & Wreford, A. I. (2024). Student’s Performance Evaluation Using Ensemble Machine Learning Algorithms. Engineering and Technology Journal, 09(08). https://doi.org/10.47191/etj/v9i08.23

Agha, D., Meghji, A. F., Bhatti, S., & Memon, M. (2023). Educational Data Mining in Outcome-Based Education: An Analysis of Predictive Models for Program Learning Outcome Attainment. VAWKUM Transactions on Computer Sciences, 11(2), 123–138. https://doi.org/10.21015/vtcs.v11i2.1706

Almaghaslah, D. (2025). Challenging the curve: can ChatGPT-generated MCQs reduce grade inflation in pharmacy education. Frontiers in Pharmacology, 16(January), 1–7. https://doi.org/10.3389/fphar.2025.1516381

Alturki, S., Cohausz, L., & Stuckenschmidt, H. (2022). Predicting Master’s students’ academic performance: an empirical study in Germany. Smart Learning Environments, 9(1). https://doi.org/10.1186/s40561-022-00220-y

Asiah, M., Nik Zulkarnaen, K., Safaai, D., Nik Nurul Hafzan, M. Y., Mohd Saberi, M., & Siti Syuhaida, S. (2019). A Review on Predictive Modeling Technique for Student Academic Performance Monitoring. MATEC Web of Conferences, 255, 03004. https://doi.org/10.1051/matecconf/201925503004

Czerkawski, B. C. (2015). When Learning Analytics Meets E-Learning. Online Journal of Distance Learning Administration, 18(2), 1–5. http://tinyurl.com/acz5f7o

Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241–258. https://doi.org/10.1007/s11704-019-8208-z

E. Ben George, Senthilkumar, R., Al-Junaibi, F., & Al-Shuaibi, Z. (2025). Explainable AI Methods for Predicting Student Grades and Improving Academic Success. Journal of Information Systems Engineering and Management, 10(23s), 117–126. https://doi.org/10.52783/jisem.v10i23s.3680

El Jihaoui, M., Abra, O. E. K., & Mansouri, K. (2025). Predicting and Interpreting Student Academic Performance: A Deep Learning and Shapley Additive Explanations Approach. SHS Web of Conferences, 214, 01001. https://doi.org/10.1051/shsconf/202521401001

Falát, L., & Piscová, T. (2022). Predicting GPA of University Students with Supervised Regression Machine Learning Models. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178403

Ghimire, S., Abdulla, S., Joseph, L. P., Prasad, S., Murphy, A., Devi, A., Barua, P. D., Deo, R. C., Acharya, R., & Yaseen, Z. M. (2024). Explainable artificial intelligence-machine learning models to estimate overall scores in tertiary preparatory general science course. Computers and Education: Artificial Intelligence, 7(November), 100331. https://doi.org/10.1016/j.caeai.2024.100331

Jaehn, M., Hissbach, J., Frickhoeffer, M., Weppert, D., Zimmerhofer, A., Hampe, W., Kadmon, M., & Becker, N. (2025). Predictive validity of admission tests and educational attainment on preclinical academic performance – a multisite study. BMC Medical Education, 25(1). https://doi.org/10.1186/s12909-025-07974-2

Jović, J., Kisić, E., Milić, M. R., Domazet, D., & Chandra, K. (2022). Prediction of student academic performance using machine learning algorithms. CEUR Workshop Proceedings, 3454(September), 31–39.

Kamal, P., & Ahuja, S. (2019). Academic performance prediction using data mining techniques: Identification of influential factors effecting the academic performance in undergrad professional course. In Advances in Intelligent Systems and Computing (Vol. 741). Springer Singapore. https://doi.org/10.1007/978-981-13-0761-4_79

Khan, H. F., Qayyum, S., Beenish, H., Khan, R. A., Iltaf, S., & Faysal, L. R. (2025). Determining the alignment of assessment items with curriculum goals through document analysis by addressing identified item flaws. BMC Medical Education, 25(1). https://doi.org/10.1186/s12909-025-06736-4

Mio, M. J. (2024). Alternative grading strategies in organic chemistry: a journey. Frontiers in Education, 9(May), 1–13. https://doi.org/10.3389/feduc.2024.1400058

Ngulub, P., & Masumbika Ncube, M. (2025). Predicting Academic Success and Identifying At-Risk Students: A Systematic Review of Data Analytics and Machine Learning Approaches in Higher Education Institutions. Educational Administration: Theory and Practice, January. https://doi.org/10.53555/kuey.v31i1.8447

Nor Afiqah Wan Othman, W., Abdullah, A., & Romli, A. (2020). Predicting Graduate Employability based on Program Learning Outcomes. IOP Conference Series: Materials Science and Engineering, 769(1). https://doi.org/10.1088/1757-899X/769/1/012018

Olaleye, T. O., & Vincent, O. R. (2020). A Predictive Model for Students’ Performance and Risk Level Indicators Using Machine Learning. 2020 International Conference in Mathematics, Computer Engineering and Computer Science, ICMCECS 2020. https://doi.org/10.1109/ICMCECS47690.2020.240897

Pali, P., & Verma, S. (2024). Predictive Analytics for Student Performance: A Machine Learning Model for Higher Education. International Journal of Innovative Research in Computer and Communication Engineering, 12(05), 8151–8158. https://doi.org/10.15680/ijircce.2024.1205366

Pao Liew, C., & Loo Kiew, P. (2022). Sustainable Assessment: The Inevitable Future of Engineering Curriculum. ASEAN Journal of Engineering Education, 6(1), 23–32.

Park, B., & Cho, J. (2023). How does grade inflation affect student evaluation of teaching? Assessment and Evaluation in Higher Education, 48(5), 723–735. https://doi.org/10.1080/02602938.2022.2126429

Rafiq, J. E., Abdelali, Z., Amraouy, M., Nouh, S., & Bennane, A. (2025). Predicting academic performance: toward a model based on machine learning and learner’s intelligences. International Journal of Electrical and Computer Engineering, 15(1), 645–653. https://doi.org/10.11591/ijece.v15i1.pp645-653

Raji, N. R., Kumar, R. M. S., & Biji, C. L. (2024). Explainable Machine Learning Prediction for the Academic Performance of Deaf Scholars. IEEE Access, 12(February), 23595–23612. https://doi.org/10.1109/ACCESS.2024.3363634

Rane, N., Choudhary, S. P., & Rane, J. (2024). Ensemble deep learning and machine learning: applications, opportunities, challenges, and future directions. Studies in Medical and Health Sciences, 1(2), 18–41. https://doi.org/10.48185/smhs.v1i2.1225

Sghir, N., Adadi, A., & Lahmer, M. (2023). Recent Advances in Predictive Learning Analytics: A Decade Systematic Review (2012–2022). In Education and Information Technologies (Vol. 28, Issue 7). Springer US. https://doi.org/10.1007/s10639-022-11536-0

Tjandra, E., Ferdiana, R., & Setiawan, N. A. (2024). OBE-Based Course Outcomes Prediction Using Machine Learning Algorithms. 2024 International Conference on Intelligent Cybernetics Technology and Applications, ICICyTA 2024, March, 197–202. https://doi.org/10.1109/ICICYTA64807.2024.10913307

Wang, C., Chen, Q., Xue, B., & Zhang, M. (2024). Multi-task Genetic Programming with Semantic based Crossover for Multi-output Regression. GECCO 2024 Companion - Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion, 543–546. https://doi.org/10.1145/3638530.3654282

Xue, H., & Niu, Y. (2023). Multi-Output Based Hybrid Integrated Models for Student Performance Prediction. Applied Sciences (Switzerland), 13(9). https://doi.org/10.3390/app13095384

Yekun, E. A., & Haile, A. T. (2021). Student Performance Prediction with Optimum Multilabel Ensemble Model. Journal of Intelligent Systems, 30(1), 511–523. https://doi.org/10.1515/jisys-2021-0016

Zanellati, A., Zingaro, S. P., & Gabbrielli, M. (2024). Balancing Performance and Explainability in Academic Dropout Prediction. IEEE Transactions on Learning Technologies, 17, 2140–2153. https://doi.org/10.1109/TLT.2024.3425959

Zayani, H. M., Abdelfattah, W., Slimane, J. Ben, Kachoukh, A., & Sellami, R. (2024). A Framework for Efficient and Accurate Automated CLO and PLO Assessment. Engineering, Technology and Applied Science Research, 14(2), 13362–13368. https://doi.org/10.48084/etasr.6846

Zhang, R., Zhou, P., & Chai, T. (2023). Improved Copula-based conformal prediction for uncertainty quantification of multi-output regression. Journal of Process Control, 129, 103036. https://doi.org/10.1016/j.jprocont.2023.103036

Zhu, W. (2024). High school student GPA prediction by various linear regression models. Theoretical and Natural Science, 52(1), 153–162. https://doi.org/10.54254/2753-8818/52/2024ch0136

Downloads

Published

2025-11-30

How to Cite

Abd Ghani, M. N., & Nusyirwan, I. F. (2025). Beyond Grades - Predicting Programme Learning Outcomes with Multi-Output Regression in Malaysian Higher Education: Melangkaui Gred: Meramal Hasil Pembelajaran Program (PLO) dengan Regresi Pelbagai Hasil dalam Pendidikan Tinggi Malaysia. Sains Insani, 10(2), 124–138. https://doi.org/10.33102/sainsinsani.vol10no2.838

Issue

Section

Education

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.