Transformation of Customer Satisfaction Assessment through AI Integration in Enhancing Service Quality

Transformasi Penilaian Kepuasan Pelanggan Dengan Integrasi AI dalam Meningkatkan Kualiti Perkhidmatan

Authors

  • Farid Arifin Md Arifin UNIVERSITI KEBANGSAAN MALAYSIA
  • Kamisah Osman Fakulti Pendidikan Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.

DOI:

https://doi.org/10.33102/sainsinsani.vol10no2.832

Keywords:

Artificial Intelligence (AI), customer satisfaction, generative AI, digital transformation

Abstract

Abstract: The digital transformation driven by the Fourth Industrial Revolution has shifted customer satisfaction assessment from manual methods to intelligent, technology-based approaches, particularly those employing Artificial Intelligence (AI). This concept paper discusses the role of AI in transforming customer satisfaction evaluation through applications such as Natural Language Processing (NLP), Machine Learning (ML), sentiment analysis and generative AI models. AI enables organizations to analyze customer data in real time, identify behavioral patterns and needs, and deliver personalized experiences. The use of chatbots and virtual assistants enhances interaction efficiency, while AI-based Customer Relationship Management (CRM) systems optimize feedback and service strategies. The paper also highlights AI’s impact on customer engagement, particularly in fostering proactive and empathetic relationships and improving loyalty. However, AI implementation faces ethical challenges, including data privacy, algorithmic bias and system transparency. Hence, the development of responsible and human-centered AI models is essential. Generative AI further strengthens service approaches through the integration of emerging technologies such as blockchain, the Internet of Things (IoT), and augmented/virtual reality (AR/VR). In conclusion, AI integration not only improves efficiency but also reshapes the service delivery paradigm toward greater responsiveness and customer orientation. Future studies are recommended to compare the effectiveness of AI-based and conventional satisfaction assessment methods and to develop hybrid AI-human models that combine technological analytics with human empathy for more effective service feedback.

Abstrak: Transformasi digital yang dipacu oleh Revolusi Industri 4.0 telah mengubah penilaian kepuasan pelanggan daripada pendekatan manual kepada pendekatan pintar berasaskan teknologi, khususnya kecerdasan buatan (Artificial Intelligence, AI). Kertas konsep ini membincangkan peranan AI dalam mentransformasikan sistem penilaian kepuasan pelanggan melalui aplikasi seperti pemprosesan bahasa semula jadi (Natural Language Processing, NLP), pembelajaran mesin (Machine Learning, ML), analisis sentimen dan model AI generatif. AI membolehkan organisasi menganalisis data pelanggan secara masa nyata, mengenal pasti corak tingkah laku serta keperluan dan menawarkan pengalaman yang diperibadikan. Penggunaan chatbot dan pembantu maya meningkatkan kecekapan interaksi pelanggan, manakala sistem Pengurusan Perhubungan Pelanggan (CRM) berasaskan AI mengoptimumkan strategi maklum balas dan perkhidmatan. Kajian turut menyoroti impak AI terhadap penglibatan pelanggan dalam membina hubungan proaktif dan empati serta meningkatkan kesetiaan pelanggan. Namun, pelaksanaannya berdepan cabaran etika seperti privasi data, bias algoritma dan ketelusan sistem. Oleh itu, model AI yang bertanggungjawab dan berpusatkan manusia amat diperlukan. AI generatif juga berpotensi memperkukuh pendekatan

perkhidmatan melalui integrasi teknologi seperti rantai blok (blockchain), Internet Benda (IoT) dan realiti terimbuh/maya (AR/VR). Kesimpulannya, integrasi AI bukan sahaja dapat meningkatkan kecekapan, malah membentuk paradigma baharu penyampaian perkhidmatan yang responsif dan berorientasikan pelanggan. Kajian lanjutan dicadangkan untuk menilai keberkesanan AI berbanding kaedah konvensional serta membangunkan model hibrid AI-manusia yang menggabungkan analitik teknologi dan empati manusia..

Downloads

Download data is not yet available.

References

Abdullah, F. (2006). Measuring service quality in higher education: HEdPERF versus SERVPERF. Marketing Intelligence & Planning, 24(1), 31–47. https://doi.org/10.1108/02634500610641543

Abiagom, C. N., & Ijomah, T. I. (2024). Enhancing customer experience through AI-driven language processing in service interactions. Open Access Research Journal of Engineering and Technology, 7(1), 014–021. https://doi.org/10.53022/oarjet.2024.7.1.0027

Alinda Rahmi, N., & Wulan Dari, R. (2024). Implementation of natural language processing (NLP) in consumer sentiment analysis of product comments on the marketplace. Jurnal Teknik Informatika (Jutif). https://doi.org/10.52436/1.jutif.2024.5.3.1666

Cardozo, R.N. (1965) An Experimental Study of Customer Effort, Expectation, and Satisfaction. Journal of Marketing Research, 3, 244-249. http://dx.doi.org/10.2307/3150182

Choubey, M. (2024). The Self-Improving Customer Service System: How AI Learns from Every Interaction. International Journal for Multidisciplinary Research. https://doi.org/10.36948/ijfmr.2024.v06i06.30111

Dwivedi, Y., & Kurde, A. (2024). AI-Driven Innovation in CRM: Exploring the Potential of Generative Models for Customer Experience Optimization. Indian Scientific Journal of Research in Engineering and Management, 08(10), 1–4. https://doi.org/10.55041/ijsrem37873

Ganesan, Santosh. (2024). Enhancing Customer Experience with Generative AI in Financial Services Contact Centers. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 10. 943-949. 10.32628/CSEIT241051084. https://doi.org/10.32628/cseit241051084

Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30–50. https://doi.org/10.1007/s11747-020-00749-9

Inavolu, S. M. (2024). Exploring AI-Driven Customer Service: Evolution, Architectures, Opportunities, Challenges and Future Directions. International Journal for Multidisciplinary Research. https://doi.org/10.36948/ijfmr.2024.v06i03.22283

Mayer-Schönberger, Viktor & Cukier, Kenneth. (2013). Big Data: A Revolution that Will Transform how We Live, Work, and Think.

Mkhize, S., Nkosi, A., Dlamini, T. & Motsoeneng, L. (2022). Integrating Blockchain and Artificial Intelligence for Enhanced Transparency, Security, and Efficiency in E-Commerce Supply Chains: Applications, Challenges, and Future Directions (February 2022).

Noorizki, A.Z., Pratikno, H., & Kusumawati, W.I. (2024). Klasifikasi Emosional Ulasan Pelanggan dengan Pendekatan NLP menggunakan Metode Ensemble dan ROS. Techno.Com.

Oliver, R. L. (1997). Satisfaction: a behavioral perspective on the consumer. New York: McGraw-Hill Inc.

Okeke, N. I., Alabi, O. A., Igwe, A. N., Ofodile, O. C., & Ewim, P.-M. (2025). Corresponding author: Nnenna Ijeoma Okeke AI in customer feedback integration: A data-driven framework for enhancing business strategy. 24. 2036-2052. 10.30574/wjarr.2024.24.1.3207.

Pambudi, R., Budiman, A., Rahayu, A. W., Sukanto, A. N. R. & Hendrayani, Y. (2023). Dampak Etika Siber Jejaring Sosial Pada Pembentukan Karakter Pada Generasi Z. JURNAL SYNTAX IMPERATIF: Jurnal Ilmu Sosial dan Pendidikan 4. 289-300. 10.36418/syntax-imperatif.v4i3.262.

Parasuraman, A Parsu & Zeithaml, Valarie & Berry, Leonard. (1988). SERVQUAL A Multiple-item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing. 64. 12-40.

Patil, D. (2025). Artificial Intelligence-Driven Customer Service: Enhancing Personalization, Loyalty, And Customer Satisfaction. https://doi.org/10.2139/ssrn.5057432

Lianto, Erica. (2024). Peran chatbot artificial Intelligence dalam membentuk kepuasan pelanggan. Technologia: Jurnal Ilmiah. 15. 20. 10.31602/tji.v15i1.13220.

Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.

Sterne, J., & Davenport, T. H. (2024). Improving voice of the customer analysis with generative AI. Applied Marketing Analytics: The Peer-Reviewed Journal, 10 (1), 32-41 (2024) https://doi.org/10.69554/vypb2186

Whig, P., Bhatnagar Bhatia, A., & Yathiraju, N. (2024). AI-Driven Innovations in Service Marketing Transforming Customer Engagement and Experience. Advances in Hospitality, Tourism and the Services Industry (AHTSI) Book Series, 17–34. https://doi.org/10.4018/979-8-3693-7909-7.ch002

Wong, Meng & Jackson, Stephen. (2017). User satisfaction evaluation of Malaysian e-government education services. 531-537. 10.1109/ICE.2017.8279931.

Downloads

Published

2025-11-30

How to Cite

Md Arifin, F. A., & Osman, K. (2025). Transformation of Customer Satisfaction Assessment through AI Integration in Enhancing Service Quality: Transformasi Penilaian Kepuasan Pelanggan Dengan Integrasi AI dalam Meningkatkan Kualiti Perkhidmatan. Sains Insani, 10(2), 154–161. https://doi.org/10.33102/sainsinsani.vol10no2.832

Issue

Section

Economics & Business Management